
www.manaraa.com

Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2010

Implementing the Intelligent Mail Barcode in the N-Tiered Service Implementing the Intelligent Mail Barcode in the N-Tiered Service

Library of a Print Mail Enterprise Library of a Print Mail Enterprise

Christopher E. Bunch
Columbus State University, bunch_christopher@columbusstate.edu

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bunch, Christopher E., "Implementing the Intelligent Mail Barcode in the N-Tiered Service Library of a Print
Mail Enterprise" (2010). Theses and Dissertations. 55.
https://csuepress.columbusstate.edu/theses_dissertations/55

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/55?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

www.manaraa.com

Digitized by the Internet Archive

in 2012 with funding from

LYRASIS Members and Sloan Foundation

http://archive.org/details/implementinginteOObunc

www.manaraa.com

Columbus State University

The College of Business and Computer Science

The Graduate Program in Applied Computer Science

Implementing the Intelligent Mail

Barcode in the N-Tiered Service

Library of a Print Mail Enterprise

A Thesis in

Applied Computer Science

by

Christopher E Bunch

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2010

©2010 by Christopher Bunch

www.manaraa.com

I have submitted this thesis in partial fulfillment of the requirements for the degree of

Master of Science

Date* Christopher E/Bunch

We approve the thesis of Chris Bunch as presented here.

rWy 6,^616
Date Christopher C. Whitehead, Assistant Professor of

Computer Science, Thesis Advisor

Date

Dat

V. ~2aw>A/
Vladimir Zaniv, Professor of Computer Science

#£
Joh/yfheis, Associate Professor of Finance

www.manaraa.com

Ill

Acknowledgements

I could never have completed the work resulting in this

document without the assistance of those mentioned below.

Emdeon. Thank you for your permission to use my work with

the Emdeon print mail engine in the contents of this thesis.

Dr. Chris Whitehead. When a good professor finishes the

semester, they have taught the syllabus completely and

effectively. That's where Dr. Whitehead starts.

Brian Cooper. Thank you for staying one step ahead of me. It is

easier to run when you have something to chase.

Carter Bunch and Harris Bunch. I began improving my
education as a means to improve my career. During my

pursuits, the two of you arrived. Now, as I finish the education,

my reasons are less about me and more about you. Thank you

both.

Heather Bunch. Thank you, thank you, thank you. Your

patience and love enabled the completion of this work more

than anything else.

www.manaraa.com

IV

Table of Contents

List of Figures v

Abstract 1

Introduction 2

Chapter 1 - Intelligent Mail Barcode 4

Intelligent Mail Barcode Evolution and Specifics 5

Chapter 2 - Windows Communication Foundation 11

Windows Communication Foundation - Contract Definition 14

Windows Communication Foundation - Endpoint Definition 16

Windows Communication Foundation - Hosting 18

Chapter 3 - Print Mail Operations at Emdeon Patient Billing and Payment Solutions Business Unit

22

Database 23

Job Design 27

Job Design - Patient Connect Overview 27

Job Design - Rule Configuration 33

Job Design - Rule Creation 36

Job Execution 42

Job Execution BizTalk 43

Job Execution - WCF Services 44

Chapter 4 - Implementation of Intelligent Mail Barcode at Emdeon 49

Conclusion and Areas for Additional Research 54

Bibliography 56

www.manaraa.com

List of Figures

Figure 1: 2-Dimensional Barcode Digit Encoding 6

Figure 2: 4-Dimensional Intelligent Mail Barcode 8

Figure 3: Intelligent Mail Barcode Field Specifications 10

Figure 4: WCF Service Code 15

Figure 5 : Adding Service Reference to a >Net Project in Visual Studio 2008 20

Figure 6: Parent Child Hierarchy from Client to Action 25

Figure 7: Emdeon PBPS Print Mail Data Mo 26

Figure 8: Patient Connect New Client Setup Wizard 29

Figure 9: Patient Connect _view.WizardControl_OnFinishClick 29

Figure 10: Patient Connect _presenter.OnFinish 30

Figure 11: Patient Connect _model.Addl\lewClient 31

Figure 12:Patient Connect _service.AddNewClient 32

Figure 13: Patient Connect Job Header form 34

Figure 14: Patient Connect Rule Creation Wizard - Step 1 37

Figure 15: Patient Connect Rule Creation Wizard - Step 2 38

Figure 16: Patient Connect Rule Creation Wizard - Step 3 39

Figure 17: Patient Connect Rule Creation Wizard - Step 4 40

Figure 18: Patient Connect Rule Action Search Design 41

Figure 19: BizTalk Orchestration - Eval Variables 44

Figure 20: Emdeon Print Mail Services Diagram 45

Figure 21: Emdeon Print-mail Engine Process Flow 46

Figure 22: BTSBatchService.ExtractDocuments 49

Figure 23: imbTrackingCode and imbRemitTrackingCode 50

Figure 24: Postal service levels 51

Figure 25: Injecting product XML with 1MB value 53

www.manaraa.com

Abstract

Starting in autumn, 2009, the Intelligent Mail Barcode fully replaced the PostNet

barcode for the United States Postal Service. This barcode enables a sender of a mailpiece to

track the mailpiece through the entire mail stream, as well as track any remit mail returned to

the sender. This thesis explains how the Intelligent Mail Barcode was implemented in the n-

tiered Windows Communication Foundation service architecture of the Emdeon, Inc. print-mail

engine. To help provide a full understanding of the environment, this document, also, explains

the operation of the print mail engine at Emdeon.

www.manaraa.com

Introduction

In 2006 the United States Postal Service (USPS) released Intelligent Mail Barcode

(1MB) as is a service designed to both improve the speed of mail delivery and provide

functionality for a mail sender to track the delivery of the mailpiece. A user of 1MB is

required to meet the specifications set forth by the USPS. This thesis demonstrates an

implementation of 1MB in a print-mail engine where the operations are processed by an

n-tier service library. The print-engine in the demonstration is owned by Emdeon, Inc.

The first chapter of this thesis is devoted to the history, purpose, and

requirements of the Intelligent Mail Barcode (1MB). These requirements were

established by the USPS and must be met by any person or enterprise intending to use

the services offered by 1MB.

The second chapter of this document surveys WCF to establish the working

environment. The chapter defines WCF, and illustrates how WCF services differ from

web services. Each WCF service requires three components: contracts, endpoints, and

hosting the service. Each of these components will be covered in the first chapter.

The third chapter is divided into two sections. The first section describes the

Emdeon PBPS print-mail engine, and how Patient Connect, the application used at

Emdeon to administer print mail jobs, helps create and administer the print-mail jobs.

The second section describes the print-mail job execution managed by a BizTalk

orchestration and processed by WCF services. The intent of both sections is to explain

the business requirements of the Emdeon print mail engine.

www.manaraa.com

The fourth chapter demonstrates how 1MB was implemented at Emdeon. The n-

tiered architecture of the print mail engine allowed 1MB to be easily implemented. Only

two items needed to be changed. The first item is a stored procedure, and the second

item is a class in the core framework used by all Emdeon PBPS systems.

www.manaraa.com

Chapter 1 - Intelligent Mail Barcode

Using direct advertising to further the pursuits of commerce has been in use

since at least 1000 B.C. when an Egyptian landowner might write an advertisement for

the return of a runaway slave on a piece of papyrus.
1

In the times of Babylonia,

messages were often placed on bricks and sent directly to an intended recipient.
1

Though it was present early in the history of civilization, since only a small portion of the

population was able to read, mail was not a prevalently used service until much later.
x

Even after mail became a common service, since each message had to be hand written,

it was still difficult for a business to use the service effectively.
x
Around 1434,

Gutenberg invented movable type, giving birth to the printing industry.

In the 20
th

century, the print-mail industry improved marketability with the

addition of computers to manage the printers.
14

Computers allowed for a client to send

the mailer a file in a format agreed upon, and the mailer could then parse the file and

send the proper instruction to the print machine. When the machine completed its

work, an envelope containing the mailpiece was ready to be shipped.
1

Today, the list of technologies that enable the efficient production of print-mail

is extensive. For example, a printer may develop an in-house system to parse incoming

client files and save the files in an extensible mark-up language (XML) format to a

specified shared drive. A second program can parse the XML based on rules supplied by

the client (i.e. determine which fields go where on the mailpiece and the envelope). A

third program can transform the finished XML into a format readable by the printers

1
History of Direct Mail, <http://www.direct-mail.org/history.htm>

www.manaraa.com

and send the document to the printers. The print-mail engine at Emdeon, discussed in

follow on chapters, operates similarly to this.

Any of the steps in the example can be expanded or even removed based on the

service level of the print company. The higher the level of service, the more options are

available to the customer. The availability of additional options requires the print-mail

company to have an ability to fulfill the requirements of the option. Although starting a

small print-mail company is relatively easy, making the company become a competitor

for the larger print mailers requires a well-designed architecture for managing and

processing the print requests.

Intelligent Mail Barcode Evolution and Specifics2

With print mail, there is no way to know when the customer received the

document(s), and, unless certified mail is used, there is no defense if the recipient

claims to have never received the document(s). The Intelligent Mail Barcode not only

solves this problem for mailers, but also provides a way for the mailer to anticipate the

arrival of any remit mail. This section will explore the specifications of the Intelligent

Mail Barcode.

The USPS has long provided a postage discount to mass mailers if they used a

barcode in the mail-to address.
15

Previously, the barcode used was the PostNet

barcode. The PostNet eased the processing requirements of the USPS in delivering the

2
Intelligent Mail Barcode

<https://ribbs.usps.gov/intelligentmail_mailpieces/documents/tech_guides/SPUSPS-B-3200E001.pdf>

www.manaraa.com

mailpiece, and increased dependability that the mail would be delivered accurately and

swiftly. But the PostNet did not provide tracking information to the sender. PostNet

stands for Postal Numeric Encoding Technique. It is a method to encode numeric values

in a 2-dimensional barcode (see below). This numeric encoding made it simple for the

USPS to scan a letter to determine the mail-to zip code.

Value Encoding

1
• nil

2
.•I.I

3
..II.

4

5
.1. 1.

6
.11..

7
I...I

8
lull

9
III..

II...

Figure 1: 2-Dimensional Barcode Digit Encoding

The original PostNet encoded only six digits: the five digit zip-code and a single

check digit used for validation, but the most recent version encoded 12 digits (ZIP+4, the

delivery point, and the check digit).
3
There have been four revisions, and the last

revision allowed the USPS to sort mail into a delivery point sequence. Every mailbox is a

separate delivery point.
4
Sorting the mail in delivery point sequence improves the

speed of delivery. This PostNet contains all the information needed to get the mail to

the mail-to address.

POSTNET <http://en.wikipedia.org/wiki/POSTNET>.

Delivery Points < <http://en.wikipedia.org/wiki/Delivery_point >

www.manaraa.com

The check digit is a single digit encoded to the end of the barcode that creates a

method for the USPS to verify the validity of the barcode before using it to send the

mailpiece. The check digit is generated by first adding all the digits in the zip code and

delivery point.
18

For instance, if the ZIP+4 and delivery code were 37071140711, then

the first step in finding the check digit would be finding the sum

3+7+0+7+3+1+4+0+7+1+1 or 34. Next, find the modlO of the sum. The ModlO of the

sum is the remainder when the sum is divided by 10; in the previous example, the

modlO of 34 would be 4. The last step is to subtract the value from 10. In the example,

the final check digit would be 10 - 4 or 6. Since there are only ten possible check digits,

it does not provide complete validation, but it helps ensure no digits were mistyped by

the shipping department and the barcode has not been corrupted during transit.

After the fourth revision, the PostNet barcode contained 62 bars. As the USPS

competed with private carriers, the demand grew to find functionality in the barcode

that rivaled the services of other carriers that allowed senders to track packages while

they are in route to their destination.
2
Meeting this demand would mean adding many

more digits to the PostNet. It could not stand to grow any larger so another method of

encoding the digits had to be found. This prompted the arrival of Intelligent Mail

Barcode.

In 2003, the United States Post Office (USPS) announced the Intelligent Mail

Barcode. In 2006, the barcode became available for use. The initial version of

Intelligent Mail Barcode was an improvement, but mailers were initially unsatisfied with

the process, so, in 2007, Intelligent Mail Barcode was enhanced, and the USPS released

www.manaraa.com

the final version.
5
The final version of Intelligent Mail Barcode offers more reasons than

ever to use a barcode and, starting in Fall, 2009, the USPS required use of Intelligent

Mail Barcode to receive the barcode postage discount.
16

Intelligent Mail Barcode is a 4 dimensional barcode (see Figure 2). More than

twice as much data can be contained in a four dimensional barcode than a two

dimensional barcode of equal length. Every new bar in a four dimensional barcode

increases the possible values for the entire code fourfold. So a four dimensional

barcode with five bars has 4
5
or 1024 possible values, whereas a two dimensional

barcode of the same length only has 2
5
or 32 possible values. After the bar length

constraint of the barcode was removed, adding the functionality demanded by the

public became a possibility.

Ill
lillil'rNlr'I'lHliirrlriih^lllllr'lii'lril

Figure 2: 4-Dimensional Intelligent Mail Barcode

After improving the barcode became a possibility, the next logical step was to

determine how to improve it and what needed to be done to meet the demands of the

improvement. The USPS determined that five items would be used to generate an

Intelligent Mail Barcode: a barcode identifier, a service type identifier, a mailer

5
Intelligent Mail Barcode <http://en.wikipedia.org/wiki/lntelligent_Mail_Barcode>

www.manaraa.com

identifier, a serial number, and a routing code, which is the same value previously

encoded in the PostNet.
16

Tracking Code Components

• Barcode Identifier

This is used to identify the type and purpose of the barcode. In the print-mail

industry, '00' is most commonly used.

• Service Type Identifier

The service type identifier identifies what service the USPS is to provide for the

mailpiece, standard mail, first-class mail, etc.

• Mailer Identifier

This value identifies the sender of the mail. The importance of this field in the

USPS Mailpiece Tracking section will be evident later.

• Serial Number

This identifies the individual piece of mail. There is no rule forcing this value to

be unique, but if a mailer intends to reap any of the benefits offered by the

Intelligent Mail Barcode, it would be negligent to allow for two identical serial

codes to be in the mail stream simultaneously.

Routing Code Components

• Delivery Point Zip Code

This is the entire value previously contained in the PostNet barcode. Ironically,

this section of the barcode is optional.

www.manaraa.com

10

Type Field Digits

Tracking Code

Barcode Identifier 2 (2nd digit must be 0- 4)

Service Type Identifier 3

Mailer Identifier 6 or 9

Serial Number

9 (when used with 6 digit Mailer ID)

6 (when used with 9 digit Mailer ID)

Routing Code Delivery Point ZIP Code 0,5, 9, or 11

Totil 31 Maximum

Figure 3: Intelligent Mail Barcode Field Specifications

If a package address is labeled with the Intelligent Mail Barcode, then the USPS

tracks its progress to its destination by scanning the barcode at every facility it stops at

16
on route to the destination. The USPS offers to send a log back to the mail sender

that contains the zip codes of the facilities that scanned the mailpiece and a datetime

stamp for each entry. It is the responsibility of the sender to develop their own systems

that parse and interpret the logs
16

The most appreciable purpose of Intelligent Mail Barcode is mailpiece tracking.

By parsing the USPS log, a company can track the mailpiece all the way to the

destination to know the date the recipient received the messenger. Then, by including

Intelligent Mail Barcode on the remit envelope, the sender can parse the log to discover

the date the customer replies to the message. This is very important from an

accounting perspective since it allows accounts receivable to anticipate funds from bill

payments.

www.manaraa.com

11

Chapter 2 - Windows Communication Foundation

In procedural oriented languages the emphasis is on the procedure, and all logic

executed sequentially. For most of the history of computer programming, most

mainstream applications were written using procedural oriented languages, but in the

1960s the seed was planted for object-oriented programming. This seed was planted

when Kristen Nygaard and Ole-Johan Dahl in Norway created Simula 67, the first

language to use object-orientation.
6

Object -orientation brought many new concepts to the industry. Object-

oriented programming brought many new concepts like encapsulation, inheritance, and

interface implementation. It was not long before its introduction that object-oriented

programming revolutionized the mainstream.
6

A complete discussion of object-oriented programming is beyond the scope of

this thesis, but a basic understanding of the allure of object-oriented programming is

important in understanding the birth and rise of service-oriented architecture. In turn,

understanding the birth and rise of service-oriented architecture is necessary in any

mention of the history of Windows Communication Foundation.

The ideas to group procedures and functions in sets that exist in synergy first

came to programmers in the 1960s.
6
They used the term classes for collections of

procedures and functions, and object-oriented programming was born. Object-

6
"The History of Object Oriented Programming" Exforsys, Inc

<http://www.exforsys.com/tutorials/oops/the-history-of-object-oriented-programming.html>

www.manaraa.com

12

orientation gained a little more ground in the 1970s when object-oriented techniques

were introduced to developers via the Lisp machine.
7

In its second decade, in the 1980s, object-orientation finally took flight. There

are many reasons the paradigm finally shifted enough in the development world to

allow the explosion of object-orientation. The reasons include in the number of

applications that operated in a server-client environment, the rising demand for a more

user-friendly user interface for every program, the need for heightened security and

encapsulation, the desire for a way to reuse code without copy/paste, and requirements

to decouple sections of a program. Whatever the reasons, by the turn of the century

object-orientation was the tool of choice in most development environments.

Unlike objects alone, services enable a developer to create an application, host it

on a server and share the functionality with anyone who wants to use it without making

them download and install any new products specific to the service.
8

Within an

enterprise with a service-oriented architecture, applications can be light and easy. All of

the functionality can be decoupled from the client interface and exist in services hosted

elsewhere throughout the enterprise.
8
This fully encapsulates and decouples all the

pieces of a program and lets servers perform all the heavy work.

If all of the services and clients in an architecture exist in the same environment

(same operating system, same frameworks, applications developed with the same

7
"Object-oriented Programming -." Wikipedia, the Free Encyclopedia. Web. 14 Mar. 2010.

<http://en.wikipedia.org/wiki/Object-oriented_programming>
8
"Decoupled Contract (Erl)" SOA Patterns Web. 22 Feb. 2010

http://www.soapatterns.orR/decoupled contract.php

www.manaraa.com

13

programming languages, etc.), then many of the hurdles commonly encountered during

development are easily surmounted.
9

In the shrinking world of today, it is a mistake for

a service-oriented architecture to assume anything about the environment and

requirements of service consumers. These concerns inspired Microsoft's desire to

expand the tools offered for web services. The culmination of this desire is Windows

Communication Foundation {WCF). In the Microsoft Development Network [MSDN),

Microsoft defines WCF as:

The typed programming model (called the service model) is designed to

ease the development of distributed applications and to provide

developers with expertise in ASP.NET Web services, .NET Framework

remoting, and Enterprise Services, and who are coming to WCF with a

familiar development experience. The service model features a

straightforward mapping of Web services concepts to those of the .NET

Framework common language runtime (CLR), including flexible and

extensible mapping of messages to service implementations in languages

such as Visual C# or Visual Basic. It includes serialization facilities that

enable loose coupling and versioning, and it provides integration and

interoperability with existing .NET Framework distributed systems

technologies such as Message Queuing (MSMQ), COM+, ASP.NET Web

9
Service Oriented Architecture (SOA) and Specialized Messaging Patterns

http://www.adobe.com/enterprise/pdfs/Services Oriented Architecture from Adobe.pdf

www.manaraa.com

14

services, Web Services Enhancements (WSE), and a number of other

functions.
10

Prior to WCF, in an effort to maximize interoperability, Microsoft had to create

separate Application Programming Interfaces (API) for web services, .Net remoting,

message queues, and distributed transactions, even though all four APIs are based on

the Standard Object Access Protocol (SOAP).
11 SOAP is a XML-based messaging protocol

that defines a set of rules for structuring messages.
12

By using SOAP messages between

processes, WCF can make any SOAP-based application interoperate with any other

SOAP based application or process.

Development of a service using WCF requires three things: contract definitions,

endpoint definitions, and hosting the service.
13

Each of these three components is

discussed briefly below. To learn more than is found in this document, each of the three

components can be studied at length in many of the references of this thesis.

Windows Communication Foundation - Contract Definition

In object-oriented programming, many classes will implement an interface that

has been supplied to users of the class. This interface will contain public methods within

the class, and one of the purposes of interfaces is to supply consumers with the

10
What is Windows Communication Foundation: <http://msdn.microsoft.com/en-

us/library/ms731082.aspx>
11

Sharp, John. Microsoft Windows Communication Foundation Step by Step.
12
Soapuser.com <http://www.soapuser.com>

13
What Is Windows Communication Foundation? <http://msdn.microsoft.com/en-

us/library/ms731082.aspx>

www.manaraa.com

15

signatures of any methods they may call. WCF contracts form a similar purpose and are

often built using an interface.

Microsoft states
14

that a service contract must specify the five following items:

The operations a service exposes.

The signature of the operations in terms of messages exchanged.

The data types of these messages.

The location of the operations.

The specific protocols and serialization formats that are used to

support successful communication with the service.

To change an interface into a service contract, two important attributes must be

added to the definition: ServiceContract and OperationContract. The service contract

identifies the interface as a service, and the operation contract identifies the operations

of the service. An example of WCF service code is below, for the purpose of the

example the contract attributes have been bolded.

[ServiceContractJL
public interface IHelloWorldService
"{

[OperationContract

]

3~ring HelloWorld (siring parameter)

;

}

Figure 4: WCF Service Code

Once the contract is set, the class functionality must be added. In the example

above, a class would be developed that implements IHelloWorldService and must

Designing and Implementing Services <http://msdn.microsoft.com/en-us/library/ms729746.aspx>

www.manaraa.com

16

contain a method named HelloWorld that accepts a string parameter and returns a

string result. Of course, just as an interface is not mandatory to develop a class, an

interface is not mandatory to develop a WCF service. The contract can be set only in the

class itself, but many enterprises prefer to use interfaces since interfaces better allow

future changes to code and add flexibility to implementation.
15

Windows Communication Foundation - Endpoint Definition

Before communication with the service can start, the client has to know where

to go, how to get there, what will be there, and how it will behave. Endpoints are

defined to enable the client to do these things. Microsoft states this precisely in MSDN:

"All communication with a Windows Communication Foundation (WCF) service occurs

through the endpoints of the service. Endpoints provide clients access to the

functionality offered by a WCF service".
16

There are four things contained in every endpoint:

• Address-where to go

• Binding information - how to get there

• Contract - who will be there

• Local implementation details - how it will behave

Every service requires a unique address. The address is used to reach a specific

service and no other. The WCF object model contains an EndpointAddress class. The

URI property and the Identity of this class are used to specify how the service can be

15
Microsoft Development Network <http://msdn.microsoft.com/en-us/library/3b5b8ezk(VS.71).aspx>

16
Microsoft Developer Network: <http://msdn.microsoft.com/en-us/library/ms733107.aspx>

www.manaraa.com

17

reached. The address of the service is in the Uri property, and the security identity and

any optional headers are contained in the identity class.

A WCF service can use several forms of transport protocol, message encoding,

and security requirements. Information about acceptable forms can be found in the

binding information of the service. This specification is used to determine how exactly

to communicate with the service (i.e. does the service use TCP or HTTP, SSL or SOAP

message security, text or binary messaging, etc.). Through the services binding

information, all of these properties of the service can be passed to the client.

If the client knows where the service can be found and how it communicates, it

is almost ready to consume the service. However, before it can, it has to know the

signatures of all available methods. Each message signature contains the form of the

message, the number, order, and data type of all required parameters, and what kind of

processing or response message is to be expected. All of this information is contained in

the contract in the endpoint.

With the three items above (Address, Binding, and Contract) a client can find and

communicate with a WCF service. However, another property of the endpoint further

extends WCF functionality. The local implementation details of the service are used to

customize the local behavior of the endpoint. The endpoint uses these settings to

participate in the construction process of a WCF runtime. For example, the address

used to access the service may be different than the address used to listen to the

service. This can be handled through the ListenUri property.

www.manaraa.com

18

Windows Communication Foundation - Hosting

After the service is created, it is not active until it is hosted within a run-time

environment. The run-time environment manages the service by controlling the context

and lifetime. Any Windows process that supports managed code can host a WCF

service. Developers can choose the hosting environment based on the service

deployment requirements, such as the application platform, transport requirements, or

the process management requirements to ensure availability. The four potential

hosting environments are Self-Hosting in a Managed Application, Managed Windows

Service, Internet Information Services (IIS), and Windows Process Activation Service

(WAS). Microsoft's description
17

of each of these hosting environments is below.

Any managed application can host WCF services. Since this requires the least

deployment infrastructure, it is considered the most flexible. The service code is

embedded inside the managed application, and then, to make the service available,

simply create and open an instance of the ServiceHost.

Two common scenarios are enabled by the approach above: WCF services

running inside console applications and rich client applications. Typically, the most use

for hosting a WCF service inside a console application manifests during the development

phase of an application. This is because hosting the service inside a console application

makes the service easy to debug, easy to trace, and easy to copy the application and

paste it in new locations.

17
Hosting Windows Communication Foundation Services <http://msdn.microsoft.com/en-

us/library/ms730158.aspx>

www.manaraa.com

19

A WCF service can also be hosted by managed windows services. In this case,

the process lifetime of the service is controlled by the service control manager for

Windows services. This type of hosting also requires hosting code be written as part of

the application. The service inherits from the ServiceBase class as well as the WCF

service contract interface, since it is implemented as both a WCF service and a Windows

service. An overridden OnStart method creates and opens the ServiceHost, and an

overridden OnStop method closes it. An installer class must be implemented that

inherits from Installer to allow the program to be installed as a Windows Service. The

operating system controls the lifetime of the service, and all versions of Windows

support this hosting option.

The Internet Information Services (IIS) hosting option is integrated with ASP. Net.

These technologies offer additional features such as process recycling, idle shutdown,

process heath monitoring, and message-based activation.
17

This is the preferred

solution for hosting highly available and highly scalable Web service applications. IIS

must be properly configured to use this hosting method, but the service code does not

have to be written as part of the application.

The new process activation mechanism for Windows Server 2008 and Windows

Vista is Windows Process Activation Service (WAS).
17

It retains the application pools,

message-based process activation, failure protection, health monitoring, and recycling

found in IIS 6.0, but it removes the dependency on HTTP from the activation

architecture.
17

www.manaraa.com

20

After the WCF services have been developed, contracts set, endpoints defined,

and the services are hosted properly, the only work remaining for the service to be

consumed and used is on the part of the client. One of the best features of WCF

services is their ease of implementation. To implement a WCF service in Microsoft

Visual Studio, a developer simply creates a new project, right clicks the project name

and selects Add New Service Reference, and supplies the endpoint address (URI) for the

service. Then the Integrated Development Environment (IDE) of Visual Studio uses the

endpoint address to review the contracts and makes all the available methods visible to

the client.

fqj Solution WCF Simple Example' (2 projects)

l! °$ Client

8 PI Host

® ^| Properties

a-

a Sy

-OSy
-QSy

:^| Progra

Add Reference...

.Add Web Reference-

Add Service Reference.

Figure 5 : Adding Service Reference to a >Net Project in Visual Studio 2008

WCF eases development, configuration, and implementation of business-to-

business communication and business-to-consumer communication, improves

interoperability with other platforms and technologies, lessens the restrictions on

messaging formats, and improves message routing. Many service-providing and service-

consuming enterprises are reaping the benefits offered by WCF. Later, in the following

www.manaraa.com

21

sections, this thesis will explore how WCF powers the print-mail engine for Emdeon, and

how the services were enhanced to implement Intelligent Mail Barcode.

www.manaraa.com

22

Chapter 3 - Print Mail Operations at Emdeon Patient Billing and Payment

Solutions Business Unit

The Emdeon Patient Billing and Payment Solutions business unit is responsible

for the creation and mailing of over ten million products per month. The service level

agreement (SLA) between Emdeon and most of its print-mail clients requires products

be in the mail stream within 24 hours (not including Sundays) of receipt of the client's

request. This SLA could not be met without an effective and robust print-mail engine.

The print engine at Emdeon uses the following subsystems, each existing on its

own server cluster.

Informatica Data Transformation Studio™

Database

Job Design

WCF Services

First Logic™

StreamServe™

This chapter focuses on the database, job design, and WCF services, but the role

of the other three components listed above is worthy of note.

Informatica Data Transformation Studio (IDTS)

This third party tool is used to write parse jobs to parse files sent to Emdeon

from print-mail customers. After parsing the files jobs created with IDTS insert the

parsed data into the print-mail database covered in a follow on section of this chapter.

www.manaraa.com

23

First Logic

First Logic is a third party service used to validate addresses. Employing the First

Logic service further prevents loss of resources for both Emdeon and its print-mail

clients.

StreamServe

StreamServe is another third party tool, and it is the last tool to touch a product

before it gets to the printer. StreamServe uses the finished product XML to create

printer command language that can be read by the printers.

Database

Emdeon employs Microsoft SQL Server for the database needs. SQL Server 2005

was chosen because of the ease of stored procedure development using SQL Server

Management Studio, the full compatibility with the .Net framework, and its relative low

cost compared to Oracle, another powerful database server. In this section this thesis

explores the data model powering the Emdeon Patient Billing and Payment Solutions

print-mail operations.

The complete data model uses more than fifty tables, but the object of this thesis is

concerned specifically with nine of these tables, listed below.

• Company

• Job

• Rule_Set

• Rule_Map

www.manaraa.com

24

• Rule

• Session

• Product

• Xml_Data

• Xml_Path

The first seven tables contain the necessary execution data for the print-mail

engine. The latter two contain the core data that determines what is printed on the

documents.

The top-level table, Company, contains, as its name suggests, company data. Each

record in this table relates to a specific print-mail customer of Emdeon. Each company

has one or more print-mail jobs, and the header data needed to perform these jobs is

contained in the Job table.

After the company and the job have been created, tasks need to be added to the

job, and that is done with the next three tables. The function of these tables is not quite

as evident as the first two.

www.manaraa.com

25

Contains Zero or More

RUeSet

Contains Zero or More

Figure 6: Parent Child Hierarchy from Client to Action

The different tasks are called rules, and, not surprisingly, these rules are stored

in the Rules table. The rules are contained within rulesets, stored in the Rule_Set table,

and each job contains rulesets. The purpose of the Rule_Map table is the least evident,

but it is of supreme importance for reusability. As can be seen in the data model in

Figure 4, the tables are joined by foreign keys that tie a table to its parent. If rule data

contained a foreign key for a rule set, then a rule could exist in one, and only one, rule

set. Many rules can be used in multiple jobs, and, therefore, must be contained in

multiple rule sets. The Rule_Map table allows for this by containing a foreign key for

rule and another foreign key for rule set.

The first five tables are static. Data is only inserted when a new company, new

job, new rule set, or new rule is created. The data is only updated in the semi-rare

occurrence that a company, job, or rule needs to change. But the data in the next two

www.manaraa.com

26

tables, Session and Product, are more dynamic. Every time a job executes, it creates a

session for the job. Every document created in a job session is a product.

The Xml_Path table is the most static table of the nine. This table stores a

relational database translation of the XML schema definitions of the printed documents.

The Xml_Data table contains all of the document data, and it is the largest of all the

tables. When a job executes a session, the rules transform the data contained in this

table.

ixt_company

PK company id

U1

effective date

lastrnodtime
deleted

name
address 1

address2

city

stat*

postalcode
recewejocation

processjocation

ixt rule set

PK

H
U1

fki.ii.ui

H

nil* sat id

effectivedate

last modtlme
deleted

nam*
jobjd
*v*nt_id

start_date

end date

active

priority

description

ixt_xml_path

PK,I2,U1,M path id

I3.I2.I1.U1.I4

l3.ej1.U2.l4

U2

effective_d ate

las t_mod_time
type

alias

path

nam*

ixtJob

PK

FK1.I1

job id

effective date

last mod time

deleted

online

jobnumber
company_id
file_mask

parser

schema
postal_service_type_id

imb enabled

ix1_rule_map

PK rul* map id

FK2
FK1

effectivedate
lastrnodtime
deleted

name
description

rul* set id

rutojd
~

priority

active

ixt xmi data

PK

FK1.I1

FK2.I1

item id

effective_date

lastrnodtime
productJd
path_id

suppress

data

ixt session

PK

II

FK1.I2

ssssion id

effective_date

lastrnodtime
session state

job_id

abort

completion_date

ixt rule

PK rul* Id

effective_date

last_mod_tim*

deleted

messaging
name
ruletype

rul*

description

ixt_product

PK.U1 product Id

FK1.U1

effectivedate

lastrnodtime
sessionid
fllejd

suppress

Figure 7: Emdeon PBPS Print Mail Data Mo

www.manaraa.com

27

Job Design

Job rules need to be created and configured, when a job is created. There are

two separate applications at Emdeon that can be used to complete job configuration.

The first application, Enterprise Studio, was developed in 2005 using .Net 1.0, and it is

nearing depreciation. The first complete version of the second application, Patient

Connect, was released in January of 2010.

Enterprise Studio contains functionality that allows for lower level configuration

than Patient Connect, and, for this reason, many more technical users still use the

application. Patient Connect is built using an n-tier architecture. In a 3-tier architecture,

the presentation layer, business rules layer, and the data layer of an application are all

encapsulated. These three tiers are mandatory in n-tier architecture. The sections

below will cover how client, jobs, and rules are created using Patient Connect.

Job Design - Patient Connect Overview

The user interface (Ul) classes contain most of the code for Enterprise Studio.

The tight coupling of the Ul and the code presented several problems for updating,

testing, and deploying any code changes. During the design phase of Patient Connect

the decision was made to decouple the code, and to use the Model-View-Presenter

(MVP) design architecture as the method to address this decoupling.

www.manaraa.com

28

1 ft

MVP addresses Ul code separation and facilitates automated unit testing. The

three elements of MVP and their responsibilities are:

• Model: An interface that defines the data to be used in the Ul; the model

contains any database commands to be executed by the application.

• View: The Ul forms; the view contains all the interactive controls (buttons,

textboxes, labels, etc.) used by the Ul.

• Presenter: The bridge between the model and the view; all commands initiated

by the view are passed to the model through the presenter, and the presenter

presents data to the view after it is returns from the model.
19

In Patient Connect the views all implement interfaces. The presenters contain a

reference to the view interfaces. This allows for deployment and testing of the

presenter logic while it is absent from the view.

The following section uses Client Creation as an example to demonstrate how

Patient Connect implements the MVP architecture design to facilitate client, job, and

rule creation and viewing of finished product XML data.

Job Design - Client Creation

Figure 4 shows the first screen in the Patient Connect client creation wizard. As a

user completes the wizard, they are required to enter name and address information for

the client and other account information that is beyond the scope of this thesis.

18
Design Patterns: Model View Presenter <http://msdn.microsoft.com/en-

us/magazine/ccl88690.aspx#Sl>
19
Model-view-presenter <http://en.wikipedia.org/wiki/Model-view-presenter>

www.manaraa.com

29

IJUI|UWl.t.l'.l'l'JIII.'IJI.'l!Ulll.l.lM

* .-< «. u m O ~ 3 -

-1*1-1

F- .h..:B,„-J, (H»kvi». loo...)

J C-^Jti ««» dm« _)V»« »

Wetcome to New Client Setup

i

».„ ir^sn

Figure 8: Patient Connect New Client Setup Wizard

The code in Figure 4 is executed when a user clicks finish in the wizard.

private void BizardContcol_Fini3hButtonCiiclc(object sendee, EventArgs e)

(

// Keep user from clicking wizard buttons after fini3h is clicked.

wizardConccol.BackButtonEnabled false;

uizardControl.NexcButtonEnabled » false;

wizardConcrol.CancelButconEnabled false;

if (_presenter .OnfiniahO)

<

>

el3e

{

>

DialogReault » DialogResult.OK;

DiaiogResult » DialogResult

.

Aboct;

Hide() ;

Figure 9: Patient Connect _view.WizardControl_OnFinishClick

The _presenter object referenced in the condition in the above code is a modular level

variable. It is declared as: private CreateClientPresenter _presenter;

www.manaraa.com

public bool OnFinishO
{

bool success true;

string message * null;

try

var newClient new -.Client

{

Name _view. ClientName,

Address 1 _view. Address 1,

Address2 - _view. Address2,

City - _view.Cicy,

State _view. State,

Zip _view.Zip,
URL - _v lew. URL,

Tearold _view.TearrId,

Oracle Id _view. Oracle Id,

PafName _view.pafiJame,

PaiTitle - _view. oafTitle,
PaiPhone _view.pafPhone,

PaiDate _view.pa£Date,

PafLicenseDate _view.pa£LicenseDate,

HoveMonths = _view.HoveHonths,
Tax Id » _view.TaxId,

Contacts » _contacts,

AccountManagers _view.SelectedAccountHanagers,

CreatedBy - _view.CreatedBy
) ;

_view. Client Id _model. AdjdNeuClient \ newClient) ;

>

catch (Exception ex)

<

success * false;

message ex.Hessage;

}

if (! success)

<

ThreadingException - message;

return success;

30

Figure 10: Patient Connect _presenter.OnFinish

The _view object, referenced in the code above, like the _presenter object

mentioned earlier, is a modular level object. Unlike the _presenter object, the _view

object is an interface (private readonly ICreateClient _view;). The

CreateClient view implements ICreateClient, and during instantiation of the jpresenter

object within the view, a reference to the view is passed as a parameter
(presenter

www.manaraa.com

31

= new CreateClientPresenter (this, _client);). This reference

becomes the _view object within the presenter, and provides full control of the view to

the presenter.

The call to the model in the code above (view. Client Id =

_model. AddNewClient (newClient) ;) prompts the model to perform all work

necessary to create the client in the database. In most MVP applications it is within this

call to the model that all database commands would be generated and the call to the

database completed, but Patient Connect also implements a service oriented

architecture (SoA). So, instead of calling the database, the model calls the service tier.

The service then uses a method within an infrastructure library to communicate with

the database.

public int AddNewClient (l lient newClient)

<l

return _service. AddNewClient (newClient)

;

>

Figure 11: Patient Connect _model.Addl\lewClient

www.manaraa.com

32

public- int AddNewClient (Client newClient)

<

cry

(

var systemld - IXTWrappei .NewClientSystemld;

vac location « new SystemRepository () .GetProcessingLocations ()

;

I

string format tedName " Fimct ions. FormatAsAlphaNumecic (newClient. Name) ;

newClient . ProcessLocation » Functions. CreateClientFolder (location. ProcessRoot, formattedName)

;

newClient .ReceiveLocation - Functions. CreateClientFolder (location. StageRoot, formattedName) ;

newClient .ReportLocat ion Functions. CreateClientFolder (location. ReportRoot, formattedName);

var clientld new ClientRepository () .AddNewClient (newClient) ;

new WebSiteRepository () .CreateCustomerPortal (systemld, clientld)

;

LogChange (systemld, Enums. AuditType. Company, clientld, newClient .CreatedBy, "Created " + newClient. Name) ;

return clientld;

>

catch (Exception ex)

<

'/Back out any folder creation that succeeded.

if (newClient. ProcessLocation !» null ££ Directory. Exists (newClient .ProcessLocation))

Directory. Delete (newClient . ProcessLocat ion) ;

if (newClient. ReceiveLocation !» null it Directory. Exists (newClient. ReceiveLocation))

Direct or -/.Delete (newClient. ReceiveLocation)

;

if (newClient .ReportLocation ! null ii Directory. Exists (newClient .ReportLocation))

Directory. Delete (newClient .ReportLocation)

;

LogError (ex) ;

throw;

)

Figure 12:Patient Connect _service.AddNewClient

In the _service.AddNewClient method above there are items worthy of mention.

First, the ProcessLocation and ReceiveLocation, and ReportLocation properties of the

Client denote where the Emdeon receives files from customers, and saves the XML

produced containing the file data, and the location to store any reports that will be sent

back to the customer.

Second, the line of code following the creation of the client (new

WebS iteReposi tor y () . CreateCustomer Portal (systemld,

clientld) ;) creates a web site specific for the client where the client's customers

can go online to pay the bills they receive in the mail via Emdeon's print-mail engine.

www.manaraa.com

33

The automated website generation is worthy of mention but is beyond the scope of this

thesis.

After the ClientRepository completes its work, the new client exists in the

database, and control of the client steps back through the application returned to the

view. Because the print-mail engine does not update or insert into the client table,

transactions with the table are very fast. Some of the other tables, such as the product,

session, and rules tables, are selected from and/or transacted with by the print-mail

engine very frequently at all times.

One of the customer service complaints about Enterprise Studio was the amount

of time a user waited for a response from the application before moving to their next

task. They complained the speed was not bad, but the application did not allow them to

complete any more work until it finished. Many customer service agents would have

multiple instances of Enterprise Studio open. They would execute a command in one,

then, while they waited, they would open another instance to perform other work. To

address this, Patient Connect introduced extensive multi-threading. Now, when the

application executes a command for the user, it often does so with a new thread. The

user can continue to work in the application while it performs the requested work.

Job Design - Rule Configuration

After the client is created, jobs and rules can be created in the same manner

following the MVP design methodology. Instead of demonstrating Patient Connects use

www.manaraa.com

34

of MVP when creating jobs and rules, it would be more beneficial to take a closer look at

the configuration of the rules for a job and how they work.

^t,,M.IJ.i,H,.J.U.l,.HJ.UJ..iJ.J..Ji..H 1-lJlxl

j a. I W ig * tel r£)KIIDIBP
i Manager *XK»K yjow Loots »*" tt*

•.MEMCF1XT16

t Patient Conned QA 3.0.1.62

ij Createfrew chant
j

|V,cw <jcbv« tessijfw
[

J f
My Dashboard ' ^Bunch-test x—

fucfirdgcrnjuy—
;^t Create a new job

view client folders

Jt View staging folder

Ljfi View processing folder

Ji View report folder

J View sessions

3f Edit this job

r
Si Check in this job

Enabled Job Name Description Last Ran Chcnoed On Changed By Checked Out By "

i

M.

•
%lr£,\f,-

-

workflow for job BUNCH-TEST

pickup files

7
Schedule

this job will...

Send invoices using:

a* PnntMail

Return Mail (Proactive)
[

Return Mail (Reactive.

Receive

4 .

Parse

process rules

Business

Batcning

Motif'cation

print setup

9
insert Sort

publish to web

P Untitled - Notepad

Figure 13: Patient Connect Job Header form

As evident in the example job in the Figure 9, there are five classes of rules:

• Business

The business rules would contain all rules that control the variation of

text or images that are printed on the products. As an example, if a client file

contains a list of all customer charge details, but the client expected Emdeon to

include the aggregate sum of the charges in the mail item, this summation would

be handled within a business rule.

• Batching

www.manaraa.com

35

If a job session contains enough products with enough pages to bring the

page count too high, the system cannot print the entire job session in one print

session. Some jobs have specific rules about how to partition (batch) the large

sessions into smaller groups so printing can complete. These rules are contained

in the batching rules.

• Notification

Many clients and customer service representatives may wish to receive

notification when a job session is complete. Any such notifications would be

added to the job via a notification rule.

• eServices

The prior section demonstrating the MVP design method mentioned how

a web site for collecting payments is created for every client by default. The

eServices rules publish job session data required for collecting these payments to

the web database.

• Advanced

The rules in all of the other rule sections occur during a specific event

contained in the job execution. For example, every business rule executes in the

After Mail-To Address Is Loaded event, but there are several events that occur

during job processing. When viewing advanced rules, every rule is visible. The

difference is that the rules are segregated based on the event in which they

execute. If a job needs a specific rule to execute in an event not used by any of

www.manaraa.com

36

the other rule groups, that rule would need to be added as an advanced rule.

These rules are called "Advanced" because they require an understanding of the

events that occur during job processing, and the rules visible as an advanced rule

but not visible in any other rule category are usually based more on technical

specifications and less on business logic.

Job creation requires supplying several configuration items that will rarely or

never be changed. These items, such as the regular expression used to identify files

belonging to the job, are supplied during the new job wizard. After completing the

wizard, the job exists, but until the rules are created, the job will do very little. In a

following section, this thesis will demonstrate how to use Patient Connect to create

rules for a job.

It is interesting to note at this point that even a job with no rules would still

create an addressed document to be mailed. All jobs share parsers, and all jobs inherit

from the master job. With a parser, print batching rules from the master job, and

StreamServe to format the printed documents a job can run and complete, successfully.

But Emdeon has a long list of customers, and few of the customers handle their data in

exactly the same way. The ability to custom fit a job to a client based on job rules gives

Emdeon a competitive advantage.

Job Design - Rule Creation

The best way to understand Patient Connect rule creation is to use the rule

creation wizard in Patient Connect to create a rule. One of the most common and most

www.manaraa.com

37

important print-mail rule categories at Emdeon is Product Suppression. These rules

suppress products that shouldn't print. The decision to not print a product may be

made based on incorrect address information, values not matching conditions supplied

by the customer, or any other reason.

The first step to creating a new suppression rule is starting the new rule wizard.

This wizard walks the user through the entire rule creation process. The wizard created

the rule with only header data. The work the rule is to perform must be configured

after the rule is created.

!
Create New Rule

" * *

Welcome to New Rule Setup

This wizard helps you add a new Rule.

1

I

To continue, dick Next.

< Back [Next >
| Cancel

Figure 14: Patient Connect Rule Creation Wizard - Step 1

The first form of the wizard, in Figure 10, is a place holder for rule creation

options that may be present in a future version of the application. In the current

version, this form does not serve an operational purpose. The only optional available to

a user, in the current version are click next, click cancel, or close the form.

www.manaraa.com

38

Create New Rule

Select Rule to Use

Select ii rule category: *

* required

Select i

Product Suppression vj|

i rule template you would like to use: *

Global Suppressions
SuDDress Product Ru e

This rule suppresses products based upon specified

conditions.

33%

|

< Back [Next > | Cancel

Figure 15: Patient Connect Rule Creation Wizard - Step 2

After selecting a rule category in the second form in the wizard, all of the rules in

that category are displayed. The user must select the rule to use before clicking next.

The example in Figure 11, shows the rules in the Product Suppression category. If a

product is suppressed, it is not added to the print queue. Applying suppression rules to

a job ensures products will not be printed when certain criteria are met. The two rules

are Global Suppression and Product Suppression. A Global Suppression rule suppresses

all the products in a job session if certain criteria are met. For example, the client may

not want any products to print if they send the file on a Tuesday. A Global Suppression

rule would handle such a request. A Product Suppression rule is used to suppress

specific products from printing. For example, if the print job produces medical billing

statements, and, if the client does not want to print any statements that contain an

www.manaraa.com

39

amount due less than one dollar, the suppression would be handled with a Product

Suppression rule.

Create New Rule

Enter Rule Information

How would you

Rule name:

Web name:

Description:

describe this rule?

Small Balance Suppression

Small Balance Suppression

Suppress statements with an amount due less than
l dollar.!

66%

|
< Back || Next >

[
Cancel

Figure 16: Patient Connect Rule Creation Wizard - Step 3

The third wizard form, shown in Figure 12, is used to assign a name to the

specific instance of the rule. The name entered here will be the name of the rule in this

specific job. This is the rule name that will be displayed when viewing the rules for the

job in Patient Connect. The web name for a rule is not currently used. The plan is to

develop a less robust version of the application that can be exposed via the web. Once

that is done, clients can build their own print-mail rules, the web name of the rule will

be the name used when the rule is viewed in the web version of the application. The

description field is used to store a description of exactly what the rule dies.

www.manaraa.com

40

Create New Rule

Completing the New Rule Setup

By clicking Finish, you will create the following rule:

Small Balance Suppression

100%

< Back Finish Cancel

Figure 17: Patient Connect Rule Creation Wizard - Step 4

The last form in the rule creation wizard, shown in Figure 13, displays the name

that had been entered for this instance of the rule. If a problem with the rule set up is

discovered later, a user can edit the rule, but, after clicking finish on this form, any time

the user edits the rule, their actions are saved in an audit table.

A SQL Server stored procedure is assigned to every rule. The stored procedure

used depends on the rule. Most rule stored procedures, require specific parameters,

@session_id and @message. The first parameter contains the value of the current

session calling the rule, and the latter parameter contains instructions for the rule. The

rule often, as it will in this example, uses information in the @message parameter to

filter the session products to a subset to which the rule will be applied. Obtaining this

www.manaraa.com

41

subset is the only purpose of the messages for Suppression Rules, but for some other

rules, such as Copy Text rules, the message can contain specific instructions for the rule.

As an example, a Copy Text rule may have an action instructing the rule to set the

address city to "Nashville, TN", or it might even instruct the rule to set the field Support5

to the sum of the values in fields AmountDue and Supportl6. There is almost no limit to

the power of a rule on processing a job.

Job Design - Creating Rule Actions

Patient Connect helps users create rules correctly with the rule creation wizard,

but rule actions cannot be created by a wizard. After clicking Create an Action on the

rule form, a dialog box requests a name for the action. Then the action is added to the

rule action list. The only thing left to do is design the message this action will use when

processing the rule. As evident in Figure 14, in the case of Suppression Rules, designing

the message has only one step.

when the following conditions are met:

Search Column Condition Search Value

GuaranfcorCharges Q

Figure 18: Patient Connect Rule Action Search Design

Designing the action to contain only the search condition above means the rule will

suppress any product where the XML field (xml_data table) GuarantorCharges is less

than 1. Since this is a suppression rule, no other information is required.

www.manaraa.com

42

The client has been successfully created. A job was created to handle client

documents. A rule was designed for the job, and an action was applied to the rule.

Now, when the client sends a file to be processed and mailed, a parser will format the

document data into a predefined XML schema. Then the data will be imported into SQL

server. The import will create a job session that will contain all of the products to be

printed. Before the documents are sent to the printer, the job will use its only rule and

rule action to check the value of the GurantorCharges XML field for all the products in

the session. If the value of this field is less than one, the job will suppress the product.

After suppression, the job will ignore the product; it will not be printed and perform no

additional work on the specific product.

Job Execution

Two things control print-mail job execution for Emdeon: BizTalk Server

orchestration and the WCF service library. The first orchestrates the work, and the

latter executes all the rules for the jobs. An extensive exploration of the power and

functionality included in BizTalk Server is beyond the scope of this thesis, but this

section provides a high-level overview of how BizTalk server orchestrates print-mail job

completion for Emdeon. After the BizTalk server overview, this section covers Emdeon's

use of WCF services to execute the tasks involved in completing print-mail jobs.

www.manaraa.com

43

Job Execution BizTalk

There are seventeen different BizTalk server orchestrations that control job process flow

for Emdeon.
20

All of the orchestrations were built using BizTalk Orchestration Designer

3.0 several years ago. These orchestrations rarely change and they work well, so there

has never been an interest in upgrading the version.

The print-mail jobs all begin as a file sent to Emdeon by the customer. BizTalk

orchestrates the control flow of this file as it is processed. As an example, the Evaluate

Variables orchestration, does as its name suggests and evaluates variables for the job

session. The variables include things like page count, which needs to be evaluated to

determine if the session is too large for the printers and needs to be split into smaller

batches.

This orchestration is one of the simpler orchestrations, but the image in Figure

15 reveals that even a simple orchestration can look fairly involved. All of the items

displayed on the left side of the page divider are decisions and calls to separate

processing steps for the session document. The items atop the page divider represent

ports that pass the session document. Finally, the items on the right side of the page

divider represent other BizTalk orchestrations.

20
BTS Services. Version 4.0. Emdeon

www.manaraa.com

44

4sfe—

G

SS l

Figure 19: BizTalk Orchestration - Eval Variables

Job Execution - WCF Services

BizTalk server controls the flow of every job session, but it performs no real

work. The WCF Service library performs all the real work. The library contains

seventeen services, but only nine of the services are devoted to print mail. Out of the

other eight services, three enable Emdeon's online medical bill pay, and the other five

each complete a specific task unrelated to print mail.

www.manaraa.com

45

c IBTSWebPublishService IBTSDupeService

BTSWebPublisti
Sealed Class

-BTSWebService

r
BTSDupeService
Sealed Class

-* BTSWebService

IBTSPageCountService ; IBTSSessionService IBTSBatchService

BTSPageCountS... ¥
Sealed Class

-*BTSWebServi«

BTSSessionService x,

Sealed Class

<• BTSWebService

BTSBatchService
Sealed Class

•BTSWebService

>

4

i

IDisposable

BTSWebService
Class

i

f
IBTSBusinessRuleService IBTSPackageService

i

IBTSAddressService

BTSBusinessRul... 19

Sealed Class

-«• BTSWebService

BTSPackageServ... s

Sealed Class

" BTSWebService

BTSAddressServ. .

.

Sealed Class

* BTSWebService

7\

IB rsimportService IB rS5kipTra(:eService

BTSImportServ
Sealed Class

-BTSWebService

ice ? BTSSkipTraceS<
Sealed Class

•BTSWebService

>

Figure 20: Emdeon Print Mail Services Diagram

In this section, the purpose of each of the nine services in Figure 17, is explained.

The following section of this thesis will cover implementation of Intelligent Mail

Barcode, and that implementation requires changes to the BTSAddressService and the

Xmllnserter class used by the service to insert address information into the product XML

document.

www.manaraa.com

46

aa
aa
aa
aa
aa
aa
aa

aa
aa
aa
aa
aa
aa
aa

aaa
aaa

+
aaa
aaa
n

-1. Sends File-
ô

Print Mai
Client

-2. Listens for File-

Product XML
Document

Print Job File Receive Directory

Informatica Data Transformation

BizTalk 2002

-5. Parses File and Creates-

6.XMLRetraved

a

<7. Inserts Product Data -

-VWCF Services

Q

%

-4. Sends File

-3. Requests Service

10. Sends Finished Product XML

11 . Return Printer Command Language

8. Sends Address XML

SQL Server 2005 Database A 12. Sends Product PCL

^ ^

9. Returns Validated Address XML

First Logic Address Validation

>" StreamServe Serrver

Print Server

Figure 21: Emdeon Print-mail Engine Process Flow

BTSWebService -The only inheritable service. This parent service is inherited by

every other service and contains all of the common service methods and properties.

BTSImportService - When a client sends a file containing the data to be printed

to Emdeon, the parser and preprocessor transform the file to XML that matches one of

the expected schemas. This service then imports the XML data into the SQL Server

database where the data can be processed.

www.manaraa.com

47

BTSBusinessRuleServices -The previous section explained print-mail business

rules. This is the class that executes the business rules. It is called during each print-

mail event, and it looks up the rulesets for the job that are to be completed in the event.

If it finds any rulesets, it executes the rules.

BTSPageCountService - StreamServe looks at the products and sessions to

determine the number of pages that need to be printed. This value is used to determine

if a product needs to be batched into smaller subgroups (batches). This service

communicates with StreamServe to assist with the page count.

BTSBatchService - Job sessions are divided into batches, based on page count

and inventory, before they are sent to the printer. This service creates the batches to

print.

BTSDupeService - In some cases a file could be mistakenly imported or

processed multiple times. This service looks for such cases and suppresses any

duplicate products.

BTSPackageService - After the session is divided into batches, it is ready for

packaging. After a batch has been packaged, it is printed and mailed. Many times it is

necessary to run a sample session for a job for testing purposes, and these sample

sessions should not be printed. This service checks to see if the session should be

printed before it is sent to the printer.

BTSSessionService -This service completes session execution by cleaning any

open queues and setting the session complete date and time. It also hashes the session

identifier. This hash value is used to prevent duplicate sessions from printing.

www.manaraa.com

48

BTSAddressService - This service communicates with the First Logic™ tool to

validate the addresses.

BTSSkipTraceService - Sometimes the client does not know the correct address

for the recipient of a mail item. These mail items are often medical statements, and

finding the recipient is important to the client. This service works with a third party

service to find the current address for a person based on information such as social

security number.

BTSWebPublishingService - Most of the documents processed and mailed by

Emdeon are medical statements. Emdeon offers a service where the patients can go

online to pay the bill. This service publishes the print-mail data to the web database to

enable the pay online service.

www.manaraa.com

49

Chapter 4 - Implementation of Intelligent Mail Barcode at Emdeon

The decision was made in June, 2009, to start implementing Intelligent Mail

Barcode (1MB) at Emdeon.
21

Chapter one covered the requirements of 1MB, and it also

discussed Emdeon's previous barcode, the PostNet barcode. Prior to 1MB

implementation, the PostNet barcode was added to the product XML during the

batching event when batches of products are created and sent to the printer.

The WCF service, BTSBatchService, executes product batching. In order to batch

the products, the service has to first extract the product details from the SQL Server

database and create the product XML document. This extraction is completed in the

ExtroctDocuments method of the service seen in Figure 22.

/// <3umroaj:y>

/// Extracts XtlL from the database.

/// </sumroary>

private int ExtractDocunents

(

int [] products, string extractFile, IxtPrintFile printFlle, string streamserve)
(

XmlExtuactor extractor * new XmlExtractoi (ProdObjectHanager)

;

extractor. PrlntFlle - prlntFile;
extractor. StreamServe • streamserve;
extractor.ConroandTlroeout ProdObJectHanager.CoBfTiandTlmeout;

extractor. Transact ion BeglnTransactionlProdObjectHanager)

;

if (File.Exists(extractFile)

)

(

File. Delete (extractFile) ;

>

if (Job.OutHap !» DBMuli.Value St < IsReturnnallSesslon)
{

string sOutHap - Conf ig.GetStyleSheetl.ocat ion (Job) + l}"\" + Job.OutHap. ();

extractor. ExtractDocunents (products, extractFile, sOutnap, Coniig. Envelope, Config.ExtractThreadCount)

;

)

else

(

extractor. ExtractDocuments (products, extractFile, null, Conf ifl. Envelope, Coniig.ExtractThreadCount) ;

>

BTS!lebSeiri,-ic Commit (ProdObjectHanager) ;

Publlsh(extractFile)

;

return extractor .Tot alExtr acted;

)

Figure 22: BTSBatchService.ExtractDocuments

21
Emdeon. "Intelligent Mail Barcode Project Plan" Developed June 2009

www.manaraa.com

50

In the ExtractDocuments method. An instance of XmlExtractor, from the Emdeon

core library, is created. The ExtractDocuments method of the instance is called by

BTSBatchService and the instance of XmlExtractor extracts the data and creates the

product XML. This chapter demonstrates the changes that had to made to the

XmlExtractor to implement 1MB.

To retrieve the product data from the SQL Server database not contained in the

xml_data table, XmlExtractor calls the up_XmlExtr-actor_GetProductInfo stored

procedure. One of the data returned by this stored procedure is the information

needed to generate the barcode. Since the 1MB barcode contains more data than the

previously used PostNet barcode, this stored procedure needed to be updated to supply

XmlExtractor with all the required data. Figure 23 shows the updates to the select

portion of the stored procedure.

convert (varchar (2 i

,

def ,barcode_id) +

isnull (pstl
.
postal_service_code, pst2

.
postal_3ervice_code) +

convert (varchar (6) , def mailer_idj +

right (replicate (' 1 ,9) + convert (varchar, p . product_id)

+ convert, (varchar (2) , '01') ,9)

as imbTrackingCode,
convert (varchar (2) , defRemit ,barcode_id) +

isnull (pst3
.
postal_3ervice_code , pst3

.
po3tal_service_code) +

convert (varchar (6) , defRemit .maiier_idj +

right (replicate (' ' ,9) + convert (varchar

,

p . product_idi

+ convert (varchar (2) ,
' 01'

) ,9)

as imbReraitTrackingCode,

Figure 23: imbTrackingCode and imbRemitTrackingCode

www.manaraa.com

51

As evident in Figure 23, two new elements were required to implement 1MB:

imbTrackingCode and imbRemitTrackingCode. Every 1MB consists of a routing code and

a tracking code (see Figure 3 in Chapter 1). The routing code component of the 1MB

barcode has the same value as the PostNet (see Figure 3 in Chapter 1). The decision was

made to transform the PostNet into the 1MB by concatenating the tracking code to the

in front of the PostNet.

The imbTrackingCode is the tracking code used for the send-to address and the

imbRemitTrackingCode is the tracking code used for the remit address. In most

instances these values would be the same. The only time the values could differ is when

a client wants the mail-to and remit to use different postal services. The new elements

returned by the stored procedure for both the imbTrackingCode and the

imbRemitTrackingCode are:

• Postal service code

This represents the level of service to use for the mail piece. The United States

Postal Service offers seventeen service levels for IMB2
2
, but only three are used

by Emdeon's print-mail engine. The three service levels employed and their

associated codes are visible in Table 3.

Description Code

First-Class Mail with Destination Confirm 41

Standard Mail with Destination Confirm 43

First-Class Mail with Destination Confirm (Remit) 700

Figure 24: Postal service levels

www.manaraa.com

52

• MaileMd

The Mailer Id is a specific identifier distributed by the postal service to identify

the sender of the mailpiece. This value is important for tracking purposes.

• Product_id

For tracking purposes, the 1MB specifications require every mailpiece contain a

serial number.
16

The Product Id is the primary key of the product table. Every

item mailed by Emdeon is a specific product. Rather than use a new serial

number to uniquely identify mailpieces, the decision was made to use this

already existing identifier.

After XmlExtractor extracts the product information, it transforms the data from

a data table to an XML document. During this extraction process, the XmlExtractor

inserts all of the product address information, including the mail-to and remit IMBs, into

the product XML. To implement 1MB the InsertAddress method of the XmlExtractor had

to be modified to inject the 1MB value into the product XML (see Figure 25).

www.manaraa.com

53

string s IntoTrackingCode null;

string slntoComplete ;

if (addressType AddressType. MaillTo)

<

slmbTrackingCode - dt.Rows[0] ["imbTrackingCode"] .ToStringO ;

}

else

{

3 IitibTrackingCode * dt.Rows[0] ["imbRemitTrackingCode"] .ToStringO;
}

slntoComplete ! String. IsNullOrEmpty (slntoTrackingCode) ££

! St r ing . IsNul lOrEmpty (address . PostNet

)

? string. Concat (slntoTrackingCode, address. PostNet)

: null;

if ('String. IsNullOrEmpty (slntoComplete))

{

// Create IrttoE lernent (slmbComplete, xpath, ref document);

ReplacePostNetWithIMB (ref document, xpath, slntoComplete);

>

Figure 25: Injecting product XML with 1MB value

The code in Figure 25 is used when injecting both the mail-to address

information and the remit address information. When the code is used to inject mail-to

data, the imbTrackingCode data returned by up_XmlExtractor_GetProductlnfo is used,

when injecting the remit data, the imbRemitTrackingCode is used. The complete 1MB is

generated by concatenating the tracking code in front of the PostNet value. As long as

the 1MB has a value after the concatenation, the ReplacePostNetWithIMB method is

called. This method's only function is to insert the 1MB value into the PostNet node of

the product XML After the code in Figure 25 completes, the 1MB is in the product XML

and ready to be used.

www.manaraa.com

54

Conclusion and Areas for Additional Research

This thesis communicated the requirements of Intelligent Mail Barcode (1MB), provided

a high-level explanation of Windows Communication Foundation (WCF), explained the print-

mail architecture at Emdeon, Inc., and, lastly, demonstrated how 1MB was implemented using

the WCF services that process Emdeon's print-mail system. By following all of the steps outlined

in this document, 1MB has been implemented successfully. But work still remains to reach full

implementation of 1MB.

Chapter 1 explained that the demand for 1MB stemmed in large part from the need for

the United States Postal Service (USPS) to compete with private carriers in the area of mailpiece

tracking. After 1MB is implemented as described in this document, USPS sends a file containing

a numeric identification of the mailpiece, a datetime stamp, and the zip code of the location of

the mailpiece at that time. Processing the information contained in this file enables an

enterprise to track products as they travel the mail stream.

Research remains to find the most efficient and effective way to process and use this

tracking data. Emdeon has plans to parse and extract this data as it is received. The intent is to

generate reports of this data. The reports are to be supplied to the print-mail client so they can

know the status of everything they have mailed using Emdeon's services. The client will also be

able to see when the remit mail is on the way back to them. In the case of remit mail containing

bill payments, these reports will help the print-mail client's accounts payable department better

anticipate funds received.

Potential uses other than reporting may be discovered during the additional research.

Possibilities include data mining to learn ways to improve receipt of remit mail. For instance, an

enterprise may learn that if they send bills near the middle of the month, they have a faster rate

www.manaraa.com

55

of return. The best way to integrate the mailpiece tracking data into existing systems also needs

to be discovered. For instance, processing of the tracking data could be added to an accounting

system to improve the accuracy of revenue forecasting.

www.manaraa.com

56

Bibliography

"15 Seconds : Windows Communication Foundation - Part 1." 15 Seconds : Asp Tutorials,

Asp.net Tutorials, ASP Programming Sample Code, and Microsoft News from 15Seconds.

Web. 14 Feb. 2010. <http://www.15seconds.com/lssue/061130.htm>.

BTS Services. Vers. 4.0. Nashville, TIM: Emdeon, 2009. Computer Software.

"Decoupled Contract (Erl)" SOA Patterns Web. 22 Feb. 2010

<http://www.soapatterns.org/decoupled_contract.php>

"Delivery Points" Wikipedia, the Free Encyclopedia s Web. 1 Apr. 2010 <

<http://en.wikipedia.org/wiki/Delivery_point >

"Design Patterns: Model View Presenter." MSDN: Microsoft Development, MSDN

Subscriptions, Resources, and More. Web. 14 Feb. 2010.

<http://msdn.microsoft.eom/en-us/magazine/ccl88690.aspx#Sl>.

Designing and Implementing Services Web. 31 Mar, 2010

<http://msdn.microsoft.com/en-us/library/ms729746.aspx>

Emdeon / The Largest Healthcare Revenue and Payment Cycle Network. Web. 14 Feb.

2010. <http://www.emdeon.com/>.

Emdeon Core Print Mail Library. Vers. 5.0. Nashville, TN: Emdeon, 2009. Computer

Software.

Emdeon. Patient Connect. Vers. 3.0. Computer Software.

Emdeon. Enterprise Studio. Vers. 3.0. Nashville, TN: 2009. Computer Software.

Emdeon. Core Framework. Vers. 5.0. Nashville, TN: 2009. Computer Software.

Emdeon. BTS Web Services. Vers. 4.5. Nashville, TN: 2009. Computer Software.

Emdeon. "Intelligent Mail Barcode Project Plan" Developed June 2009

Essential Windows Communication Foundation; Resnick, Steve, Richard Crane, and Chris

Bowen.. Boston, MA: Pearson Education,, 2008. Print. Microsoft .Net Development.

"History of Direct Mail." Direct Mail. Web. 14 Mar. 2010. <http://www.direct-

mail.org/history.htrn>.

www.manaraa.com

57

"The History of Object Oriented Programming" Exforsys, Inc. Web. 31 Mar. 2010.

<http://www.exforsys.com/tutorials/oops/the-history-of-object-oriented-

programming.html>.

"Hosting Windows Communication Foundation Services." MSDN: Microsoft

Development, MSDN Subscriptions, Resources, and More. Web. 14 Feb. 2010.

<http://msdn.microsoft.com/en-us/library/ms730158.aspx>.

"Intelligent Mail Barcode -." Wikipedia, the Free Encyclopedia. Web. 14 Feb. 2010.

<http://en.wikipedia.org/wiki/lntelligent_Mail_Barcode>.

Intelligent Mail Barcode (4-State Customer Barcode) USPS 3200.B (2005). United States

Postal Service Specification. United States Postal Service. Web.

<https://ribbs.usps.gov/intelligentmail_mailpieces/documents/tech_guides/SPUSPS-B-

3200E001.pdf>.

" Johannes Gutenberg" Wikipedia, the Free Encyclopedia. Web. 16 Dec. 2010.

<http://en.wikipedia.org/ wiki/Johannes_Gutenberg >.

Microsoft Windows Communication Foundation Step by Step; Sharp, John.. Redmond,

Wash.: Microsoft, 2007. Print.

"Microsoft Development Network" Web <http://msdn.microsoft.com/en-

us/library/3b5b8ezk(VS.71).aspx>

"Model-view-presenter." Wikipedia, the Free Encyclopedia. Web. 14 Mar. 2010.

<http://en.wikipedia.org/wiki/Model-view-presenter>.

"Object-oriented Programming-." Wikipedia, the Free Encyclopedia. Web. 14 Mar. 2010.

<http://en.wikipedia.org/wiki/Object-oriented_programming>.

"POSTNET -." Wikipedia, the Free Encyclopedia. Web. 14 Mar. 2010.

<http://en.wikipedia.org/wiki/POSTNET>.

"Print Mail Manufacturing Transformations." Industry Technical Whitepaper; Hodges,

Craig, Vice President Emdeon Patient Billing and Payment Solutions Paper

"SOAP Basics" Soapuser.com Web. 31 Mar 2010 <http://www.soapuser.com>

"Service Oriented Architecture (SOA) and Specialized Messaging Patterns"; Duane

Nickul, Laurel Reitman, James Ward, Jack Wilber; Technical White

www.manaraa.com

58

"Service-orientation -." Wikipedia, the Free Encyclopedia. Web. 14 Jan. 2010.

<http://en.wikipedia.org/wiki/Service-orientation>.

USPS National Customer Support Center. Web. 14 Feb. 2010.

<https://ribbs.usps.gov/index.cfm?page=intellmailmailpieces>.

"WCF (Windows Communication Foundation) Introduction and Implementation -

CodeProject." Your Development Resource - CodeProject. Web. 14 Mar. 2010.

<http://www.codeproject.com/KB/WCF/WCFServiceSample.aspx>.

"What Is Windows Communication Foundation?" MSDN: Microsoft Development, MSDN

Subscriptions, Resources, and More. Web. 15 Jan. 2010.

<http://msdn.microsoft.com/en-us/library/ms731082.aspx>.

"Windows Communication Foundation Endpoints: Addresses, Bindings, and Contracts."

MSDN: Microsoft Development, MSDN Subscriptions, Resources, and More. Web. 14

Mar. 2010. <http://msdn.microsoft.com/en-us/library/ms733107.aspx>.

www.manaraa.com

	Implementing the Intelligent Mail Barcode in the N-Tiered Service Library of a Print Mail Enterprise
	Recommended Citation

	Implementing the Intelligent Mail Barcode in the N-Tiered Service Library of a Print Mail Enterprise

